USER GUIDE FOR
GASSONIC SURVEYOR
ULTRASONIC GAS LEAK DETECTOR
CONTENTS

1.0 The Gassonic Surveyor .. 3
 1.1 Application .. 3
 1.2 Working principle ... 3
 1.3 Main features ... 3

2.0 Background noise mapping ... 4
 2.1 Noise levels .. 4

3.0 Mounting ... 5

4.0 Mechanical construction .. 6
 4.1 Mechanical operation and safety 7
 4.2 Spare parts and accessories 7
 4.3 Mechanical operation and safety 7

5.0 Alarm delay and trigger level 8
 5.1 Output methods .. 8
 5.2 Using the 4 - 20 mA output 8
 5.3 Alarm relay ... 9
 5.4 Error relay ... 9
 5.5 NAMUR or dry contact .. 9

6.0 Test and calibration ... 10

7.0 Gain test procedure ... 11

8.0 Delay test procedure ... 12

9.0 Calibration procedure ... 13

10.0 Step test ... 15

11.0 Gassonic Surveyor LED interface 16

12.0 Trouble shooting .. 16

13.0 Power consumption .. 16

14.0 Wiring ... 19

15.0 Technical data ... 20

16.0 Suppliers declaration ... 21

17.0 Warranty Statement .. 22

18.0 Appendix .. 23
The Gassonic Surveyor is an ultrasonic gas leak detector. It is designed to detect pressurized gas leaks by sensing the ultrasound generated by escaping pressurized gas. The detector is designed for use in harsh environments and extreme weather conditions, making it ideal for detecting leaks in complex pipeline systems both onshore and offshore.

Gassonic Surveyor is developed, marketed and serviced by Gassonic A/S. Gassonic A/S is part of the General Monitors family of companies. The Gassonic Surveyor and other selected Gassonic products are manufactured by General Monitors, Ireland.

1.1 - APPLICATION
The Gassonic Surveyor is ideal for:

- High pressure gas facilities (methane, hydrogen etc.)
- Petrochemical processing plants
- Gas pipeline compressor stations
- Gas storage facilities

1.2 - WORKING PRINCIPLE
When gas leaks from a pressurized system, it emits a characteristic “hissing” sound. A part of this sound is high frequency ultrasound, which can not be heard by humans.

As the detector senses ultrasonic noise, the Gassonic Surveyor does not have to be in contact with the leaking gas itself. It will detect the gas leak instantly even if the gas is carried away by wind or diluted in the air. The Gassonic Surveyor can be used in configurations with other detection methods.

1.3 - MAIN FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection radius</td>
<td>5 to 20 meters, depending on ultrasonic background noise level.</td>
</tr>
<tr>
<td>Sensor technology</td>
<td>Stainless steel microphone technology</td>
</tr>
<tr>
<td>Outputs</td>
<td>Analogue 4-20 mA interface and Alarm relay or Error relay. (NAMUR and dry contact).</td>
</tr>
<tr>
<td>Visual output</td>
<td>Red and green LED</td>
</tr>
<tr>
<td>Housing</td>
<td>Acid-proof stainless steel (316L)</td>
</tr>
<tr>
<td>Certifications</td>
<td>ATEX and IEC Ex, Intrinsically Safe (Ex-i) (Available on Gassonic website)</td>
</tr>
</tbody>
</table>
2.0 - BACKGROUND NOISE MAPPING

The Gassonic Surveyor filters out frequencies below 25 kHz. However, a few sources other than leaking gas may produce ultrasonic noise above 25 kHz, and could therefore trigger the detector. To avoid these sources influencing the gas leak detector, it is recommended to perform a background noise mapping survey of the plant using the Gassonic 1700 Ultrasonic Mapping Meter.

The mapping survey makes it easy to adjust the trigger level and the delay time of each detector so that it is unaffected by background noise in the area covered. Gassonic can be contacted for further details on performing this mapping survey.

2.1 - NOISE LEVELS

It is helpful to know the actual noise level before installation, as this has influence on the Gassonic Surveyor’s detection range. Most environments can be divided in three overall noise levels.

Detection Coverage Characteristics

HIGH-NOISE AREAS

In “high-noise areas” (background noise < 78dB), the trigger level must be set at 84 dB. This corresponds to a detection radius of 5-8 metres.

Typical areas:
- Turbo compressor areas
- Complete open offshore weather deck
- Next to very noisy machinery

LOW-NOISE AREAS

In “low-noise areas” (background noise < 68dB), the trigger level must be set at 74 dB. This corresponds to a detection radius of 9-12 metres.

Typical areas:
- Areas with no machinery
- Areas with low frequency machine made noise

VERY LOW-NOISE AREAS

In “very low-noise areas” (background noise < 58dB), the trigger level must be set at 64 dB. This corresponds to a detection radius of 13-20 metres.

Typical areas:
- Onshore wellhead areas in calm environment
- Salt dome gas storage facilities in calm environment
3.0 - MOUNTING

To ensure optimal performance, correct mounting of the Gassonic Surveyor is essential.

For optimal detection coverage the Gassonic Surveyor should be mounted at a height of 1 to 2 meters above potential leak spots, and if possible in a position which makes it accessible for maintenance purposes. In special cases, such as installation over compressors, the height can be increased.

The Gassonic Surveyor can be mounted on a pole or a wall using the optional mounting bracket UA1352A for standard horizontal mounting or on the 45° mounting bracket UA1353. It can also be mounted on a ceiling, on structural beams or similar non-vibrating structures.

As it primarily detects in a downward direction the unit must be mounted with the microphone compartment facing down. This will also prevent dirt from collecting in the wind screen, which may block the sound.

Mount the detector so it is clear of solid physical structures such as walls and heavy machinery, as these will dampen any ultrasonic noise, leading to reduced detection coverage. Normal piping will not affect the coverage.

If necessary, the Gassonic Surveyor can be mounted with an inclination not exceeding 45°. If mounted next to a wall, the inclination will provide improved coverage. The optional mounting bracket UA1353 can be used for mounting at a 45° angle.
The Gassonic Surveyor is an intrinsically safe (Ex-i) ultrasonic gas leak detector. The cables are connected through M20 x 1.5 cable entries in the top part using glands according to Ingress Protection class IP66. The inner cores of the cable penetrating the detector should be 200 mm long. This will ensure no tension on the wires and the connectors when the unit is opened. The two mounting bolts are on the top part of the detector. This means that the cables will enter on the fixed part of the detector. The bottom part is attached to the top part by means of four allen screws with water sealing washers. Loosening these screws will expose the connectors. The screws will be retained in the bottom part and will not drop out. The bottom part of the detector is supported by the Load-strap, which is connected to the top part.

The Gassonic Surveyor is mounted from the top with two 8 mm stainless steel bolts. Maximum thread depth is 15 mm. To open the unit, loosen the four screws. The screws are secured, and will not drop out. When closing the unit use a torque of 6Nm on the 4 screws.

The lower part of the unit is supported by a solid cable strap on which it can hang while connecting the cables.

When connecting the cables and moving the jumpers, the power of the unit must be switched off.

See wiring diagram on page 18.
4.1- MECHANICAL INSTALLATION
Two M8 stainless steel bolts (not supplied), 88mm apart, attached to the top of the detector are used to fix the Gassonic Surveyor in its operating position. These bolts may penetrate the detector top by a maximum of 14 mm. The detector can be mounted using a Gassonic mounting bracket. The bracket is an optional accessory and is supplied with two M8 mounting U-bolts which can fit around a pole with a maximum dimension of 63 mm.

4.2 - SPARE PARTS AND ACCESSORIES

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>GASSONIC PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw & Sealing Washer Kit</td>
<td>EU0001</td>
</tr>
<tr>
<td>Microphone*</td>
<td>MM4190</td>
</tr>
<tr>
<td>Magnet stick</td>
<td>UC5352</td>
</tr>
<tr>
<td>Mounting bracket (standard)</td>
<td>UA1352A</td>
</tr>
<tr>
<td>Mounting bracket (45° angle)</td>
<td>UA1353</td>
</tr>
<tr>
<td>Torque wrench</td>
<td>EZ1000</td>
</tr>
<tr>
<td>Windscreen*</td>
<td>DS0592</td>
</tr>
</tbody>
</table>

*The following parts are field replaceable but not consumable parts: Allen screw, Sealing washer, Microphone and Windscreen.

4.3 - MECHANICAL OPERATION AND SAFETY
When closing the top chamber ensure that the Load-strap and wires are not caught between the bottom part and the top part of the detector. Check the status of the rubber sealing and the flange. Send the unit to Gassonic for repair if the flange and/or the rubber sealing is damaged. Check the sealing washers and replace them if they are damaged. The four allen screws with sealing washers must be tightened to 6 Nm using a torque-wrench.

Installation and Maintenance must be carried out by suitably skilled and competent personnel only. Before opening and working on the Gassonic Surveyor in hazardous locations, be sure that power is off.

High readings of ultrasonic sound level may indicate an explosive concentration of gas at the sensor. A subsequent fall in the ultrasonic sound level does not imply that safe working conditions have been restored.

Install and maintain all hazardous area equipment in accordance with the relevant regulations and practices of the country concerned.

Special Conditions for Safe Use:
• Installation shall be in accordance with EN 60079-14 and -25 and relevant local regulations.
• The UltraSonic IS-5 shall be supplied from an isolated, certified barrier/power supply.

WARNING:
The inner three screws should not be unscrewed and the bottom part should not be opened.
The warranty will be void if the bottom part is opened.
5.1 - OUTPUT METHODS
The Gassonic Surveyor has two output methods:
Standard 4-20 mA output. When using this output method a trigger level and delay time should be set in the Fire & Gas system.

Alarm relay or Error relay. The unit has one relay output. This can be configured to be either an Alarm or Error relay. When using the Alarm relay, the trigger level and delay time should be set internally.

The relay (Alarm or Error) output is also changeable from NAMUR to Dry contact. It must be decided which output is the best suited for each application. Factory default settings are: Alarm relay and NAMUR output.

5.2 - USING THE 4-20 mA OUTPUT
When using the 4-20 mA output, the trigger level and the delay time are set in the Fire & Gas system. The 4-20 mA output is a straight output. This means that if the noise level increases the output current increases as well. The trigger level must be set at least 6 dB higher than the ambient ultrasonic background noise level. It is good practise to set the internal trigger level to the same level as the 4-20 mA trigger level in the F&G system.

Noise levels (trigger levels) and the relating output values. Other values can be calculated using this formula:

\[mA=\left(\frac{(dB-44)}{60}\right)\times16+4 \]

or

\[dB=\left(\frac{(mA-4)}{60}\right)\times16+44 \]
5.3 - ALARM RELAY
When using the Alarm relay output, the trigger level must be set internally, together with a delay time. The rotary switches are marked with numbers from 0 to 9 representing a specific value (see table below). The Alarm relay is NC (normally closed) as default factory setting.

It is good practice always to set the internal trigger level at the same level as that on the external system when using the 4-20 mA output. Doing so will ease the test procedure and the maintenance of the system.

Trigger level switch
The trigger level switch position and the corresponding ultrasonic noise level values.

<table>
<thead>
<tr>
<th>Position</th>
<th>Trigger level, dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>1</td>
<td>59</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>79</td>
</tr>
<tr>
<td>6</td>
<td>84</td>
</tr>
<tr>
<td>7</td>
<td>89</td>
</tr>
<tr>
<td>8</td>
<td>94</td>
</tr>
<tr>
<td>9</td>
<td>99</td>
</tr>
</tbody>
</table>

Alarm delay switch
The alarm delay switch position and the corresponding delay times. The delay must be at least 10 seconds.

<table>
<thead>
<tr>
<th>Position</th>
<th>Delay time, seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>120 (2 minutes)</td>
</tr>
<tr>
<td>8</td>
<td>240 (4 minutes)</td>
</tr>
<tr>
<td>9</td>
<td>480 (8 minutes)</td>
</tr>
</tbody>
</table>

5.4 - ERROR RELAY
In Error relay mode the Gassonic Surveyor will indicate low supply voltage by deactivating the relay, switching off the user LED and flashing the communication LED. The Error relay is always NC (normally closed).

The figure shows the jumper in the lower position (factory default setting) to provide Alarm relay functionality. To choose Error relay function instead of Alarm relay function, move the relay jumper to the upper position.

5.5 - NAMUR OR DRY CONTACT
The figure shows the two jumpers in the lower position (factory default settings) to provide NAMUR output functionality to either the Alarm or Error relay. To switch the relay mode from NAMUR to dry contact move the two jumpers as shown.
6.0 - TEST AND CALIBRATION

The Gassonic Surveyor is tested and calibrated as part of the manufacturing process. However, prior to use, it is good practice to test the unit and if needed perform a calibration. This can be done using the Gassonic 1701 test and calibration unit.

Start any test and calibration procedure by clipping the Gassonic 1701 onto the Gassonic Surveyor sensor head. Lock the tool on the mounting bayonet by rotating it clockwise.

To activate the calibration mode of the Gassonic Surveyor place the magnet stick in the notch as illustrated.

The magnet stick is supplied with the Gassonic 1701.
7.0 - GAIN TEST PROCEDURE

<table>
<thead>
<tr>
<th>ACTION</th>
<th>BUTTON</th>
<th>DISPLAY</th>
<th>BUTTON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Switch the Gassonic 1701 on. The version number will display briefly. You must now select the detector type.</td>
<td>![Select type]</td>
<td>![Select type]</td>
<td></td>
</tr>
<tr>
<td>2 Select “Gassonic Surveyor” by pressing the Down button and then press Enter.</td>
<td>![Gassonic Surveyor]</td>
<td>![Gassonic Surveyor]</td>
<td></td>
</tr>
<tr>
<td>3 Use default filter 25 kHz by pressing the Enter button.</td>
<td>![Filter 25 kHz]</td>
<td>![Filter 25 kHz]</td>
<td></td>
</tr>
<tr>
<td>4 Select test with the Down button.</td>
<td>![Select test]</td>
<td>![Select test]</td>
<td></td>
</tr>
<tr>
<td>5 Select gain test by pressing the Enter button.</td>
<td>![Test gain]</td>
<td>![Test gain]</td>
<td></td>
</tr>
<tr>
<td>6 Activate the test by pressing the Enter button.</td>
<td>![Activate "TEST"]</td>
<td>![Activate "TEST"]</td>
<td></td>
</tr>
<tr>
<td>7 When the test is finished, the Gassonic 1701 beeps twice, and shows a message, corresponding to the Gassonic Surveyor’s internal settings. In this example the trigger level is 79 dB and the rotary switch is in position 5. If the test is more than ± 3 dB out of tolerance, perform calibration.</td>
<td>![Meas: 79 Pos: 5]</td>
<td>![Meas: 79 Pos: 5]</td>
<td></td>
</tr>
<tr>
<td>If the test was faulty the Gassonic 1701 beeps three times and a No response message displays on the screen. Press Enter to try again, or check the “Trouble shooting”-chapter</td>
<td>![No response]</td>
<td>![No response]</td>
<td></td>
</tr>
</tbody>
</table>
8.0 - DELAY TEST PROCEDURE

After a successful gain test, you must move on to the delay test. Please note that this test will trigger an alarm regardless of output mode (Alarm relay or 4-20 mA). You should be in contact with the staff in the fire and gas control room to measure the delay time and to avoid causing a false alarm. When the control room observes an alarm, press "ENTER" or "TEST" to stop the test. The time read-out on the display corresponds to the alarm delay setting of the system. The user interface LED will turn red when the test starts and then flash when the internal delay time has passed.

ACTION	**BUTTON**	**DISPLAY**	**BUTTON**
1. Switch the 1701 on. The version number will display briefly. You must now select the sensor type. | | Select type |
2. Select “Gassonic Surveyor” by pressing the Down button and then press Enter. | | Gassonic Surveyor |
3. Use default filter 25 kHz by pressing the Enter button. | | Filter 25 kHz |
4. Select test with the Down button. | | Select test |
5. Select the delay test by pressing the Enter button. | | Test delay |
6. To test the internal delay, you must keep an eye on the unit LED as it changes from constant red to flashing red. To test the external alarm delay time you must be in contact with staff in the control room. | | Activate "TEST" |
7. Press Enter when the LED flashes red. The delay shows on the screen. If you use the analog 4-20 mA output, press Enter when the control room observes an alarm. | | Delay on: 0:10 |

Installation and User Guide for Gassonic Surveyor (BB6019-02)
9.0 - CALIBRATION PROCEDURE

A calibration can be performed at any time. Along with the Gassonic 1701, you will need the magnet-stick to set the Gassonic Surveyor in calibration mode.

<table>
<thead>
<tr>
<th>ACTION</th>
<th>BUTTON</th>
<th>DISPLAY</th>
<th>BUTTON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Switch the Gassonic 1701 tool on. The version number will display briefly. You must now select the sensor type.</td>
<td></td>
<td>Select type</td>
<td></td>
</tr>
<tr>
<td>2. Select “Gassonic Surveyor” by pressing the Down button and then press Enter.</td>
<td></td>
<td>Gassonic Surveyor</td>
<td></td>
</tr>
<tr>
<td>3. Use default filter 25 kHz by pressing the Enter button.</td>
<td></td>
<td>Filter 25 kHz</td>
<td></td>
</tr>
<tr>
<td>4. Select test with the Down button.</td>
<td></td>
<td>Select test</td>
<td></td>
</tr>
<tr>
<td>5. Select the Gassonic Surveyor calibration by pressing the Down button, and then press Enter.</td>
<td></td>
<td>Surveyor Calibr.</td>
<td></td>
</tr>
</tbody>
</table>
Activate the test and calibration mode on the Gassonic Surveyor with the enclosed magnet-stick. Place the magnet-stick in the magnet stick notch next to the interface LED and hold it for more than 3 seconds.

The interface LED will flash green and red to indicate that the unit is now in test mode. The test mode will time out after 60 sec of inactivity and return to normal mode. You may also return the Gassonic Surveyor to normal service by placing the magnet stick in the magnet stick notch again.

Activate the calibration by pressing Enter on the Gassonic 1701.

The calibration is carried out automatically, and will stop when finished. The Gassonic Surveyor LED turns green.

If the test was faulty the red LED on the Gassonic 1701 flashes and the message “No response” is displayed on the screen. The Gassonic Surveyor user LED will flash green for 5 seconds and then the unit will return to normal operation. Check the chapter “Trouble shooting” and try calibrating again.
10.0 - STEP TEST

The step test can be carried out to validate the 4-20 mA output to the control room. The test makes it possible to step through different sound pressure levels. Note that this test might trigger an alarm if the sound level exceeds the trigger level.

<table>
<thead>
<tr>
<th>ACTION</th>
<th>BUTTON</th>
<th>DISPLAY</th>
<th>BUTTON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Switch on the Gassonic 1701. The version number will display briefly. You must now select the sensor type.</td>
<td></td>
<td>Select type</td>
</tr>
<tr>
<td>2</td>
<td>Select “Gassonic Surveyor” by pressing the Down button and then press Enter.</td>
<td>Gassonic Surveyor</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Use default filter 25 kHz by pressing the Enter button.</td>
<td>Filter 25 kHz</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Select test with the Down button.</td>
<td>Select test</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Select the step test by pressing the Enter button.</td>
<td>Step test</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Push UP-button to increase the test sound level from 44 to 101 dB.</td>
<td>049 dB</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Push DOWN-button to decrease the test sound level.</td>
<td>045 dB</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>When all levels are tested, push ENTER to stop the step test.</td>
<td>Step test</td>
<td></td>
</tr>
</tbody>
</table>
The Gassonic Surveyor has two interface LEDs, which will flash red or green depending on the state of the unit. The LED on the front of the unit indicates the current mode of the Gassonic Surveyor, and the LED next to the sensor head communicates with the test- and calibration tool Gassonoc 1701. During service operations with the Gassonic 1701 the communication LED is not visible.

<table>
<thead>
<tr>
<th>NORMAL OPERATION</th>
<th>Front LED</th>
<th>Communication LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Operation</td>
<td>Green</td>
<td>Off</td>
</tr>
<tr>
<td>Low supply voltage</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>Internal Trigger level reached</td>
<td>Red</td>
<td>On</td>
</tr>
<tr>
<td>Internal Delay time elapsed</td>
<td>Flashing Red</td>
<td>On</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVICE OPERATION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration Mode</td>
<td>Flashing Red and Green</td>
</tr>
<tr>
<td>Calibration Failure</td>
<td>Flashing Green</td>
</tr>
<tr>
<td>Internal Delay time testing</td>
<td>Red</td>
</tr>
<tr>
<td>Internal Delay time elapsed</td>
<td>Flashing Red</td>
</tr>
</tbody>
</table>

12.0 - TROUBLE SHOOTING

If the calibration or gain test was faulty the Gassonic 1701 beeps three times and a No response message is displayed on the screen.

- Check if there is dirt on the optical window between the 1701 and the Gassonic Surveyor.
- Check if there is dirt on the windscreen or on the microphone.
- Replace microphone if necessary.

13.0 - POWER CONSUMPTION

The unit can operate with a supply voltage of 13 to 28 Vdc. Power consumption patterns below are calculated with a 33% safety factor, and with the minimum voltage of 13 Vdc.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Minimum Power Consumption</th>
<th>Condition</th>
<th>Minimum Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>When using the 4-20 mA and the relay in Error mode</td>
<td>(P_{\text{min}} = 744 \text{ mW})</td>
<td>Unit in alarm. Relay energized</td>
<td></td>
</tr>
<tr>
<td>When using the 4-20 mA and the relay in Alarm mode</td>
<td>(P_{\text{min}} = 657 \text{ mW})</td>
<td>Unit in alarm. Relay de-energized</td>
<td></td>
</tr>
<tr>
<td>When using only relay output in Alarm mode</td>
<td>(P_{\text{min}} = 329 \text{ mW})</td>
<td>Unit in alarm. Relay de-energized</td>
<td></td>
</tr>
</tbody>
</table>
CHART 1 - GASSONIC SURVEYOR MAXIMUM POWER CONSUMPTION

1. 4-20mA with 500ohm load, Alarm Relay (De-energized), 101dB background noise, Unit in alarm

2. 4-20mA with 500ohm load, Error Relay (Energized), 101dB background noise, Unit in alarm

3. 4-20mA not connected Alarm Relay (De-energized), 101dB background noise, Unit in alarm

4. 4-20mA not connected Alarm Relay (Energized), 101dB background noise, Unit in alarm
(5.) 4-20mA with 500ohm load, Alarm Relay (Energized), 44dB background noise, Unit not in alarm

(6.) 4-20mA with 500ohm load, Alarm Relay (Energized), 64dB background noise, Unit not in alarm

(7.) 4-20mA with 500ohm load, Alarm Relay (Energized), 84dB background noise, Unit not in alarm

(8.) 4-20mA with 500ohm load, Alarm Relay (Energized), 94dB background noise, Unit not in alarm
14.0 - WIRING

Generic wiring diagram for Gassonic Surveyor. Connection data and example wiring diagrams of MTL and Pepperl & Fuchs barriers/isolators can be found in the Appendix. Any barriers/isolators can be used as long as their output safety description does not exceed that of the Gassonic Surveyor. This product is designed to be installed according to IEC Standard EN 60079-14.

Wire connectors on the unit are individually marked for correct wiring and reference.
15.0 - TECHNICAL DATA

General description
- **Detector type**: Ultrasonic Gas Leak Detector for fixed installations
- **Sensor technology**: Stainless steel Microphone technology
- **Detector frequency range**: 25 kHz – 70 kHz
- **Dynamic range**: 44 dB – 104 dB SPL
- **Response time**: Instant
- **Detection coverage (leak rate 0.1 kg/s)**: 5 - 20 meter radius
- **Power requirements (minimum)**
 - When using 4-20mA and Relay output
 - Input Voltage: 13 Vdc
 - Input Current: 43 mA
 - Input Power: 560 mW
 - When using relay output only
 - Input Voltage: 13 Vdc
 - Input Current: 23 mA
 - Input Power: 300 mW
- **Safety description**
 - **Power supply**
 - U_i: 28/17.3 Vdc
 - I_i: 120/220 mA
 - P_i: 950 mW
 - C_i: 10 nF
 - L_i: 0.01 mH
 - **4-20 mA output**
 - U_o: U_i
 - I_o: I_i
 - P_o: P_i
 - L_o: 0.01 mH
 - C_o: 22 nF
 - **Relay input**
 - U_i: 28/17.3 V
 - I_i: 120/220 mA
 - P_i: 0.95 W
 - L_i: 0.01 mH
 - C_i: 22 nF
 - **Relay output**
 - U_o: 5.9 V
 - I_o: I_i
 - P_o: P_i
 - L_o: depends on barrier data
 - C_o: depends on barrier data

Output methods
- **Analogue interface**
 - 0 mA: Low supply voltage/No power
 - 3 mA: Unit locally inhibit
 - 4 - 20 mA: 44 dB – 104 dB SPL
- **Relay (option 1 or 2 operator selectable)**
 - **Option 1**: Alarm relay (switch on preset trigger level)
 - **Option 2**: Error relay
- **NAMUR/dry contact (operator selectable)**
 - Normal (NC): 760Ω ±1%
 - Alarm (NO): 10,422 kΩ ±1%

Environmental data
- **Operating temperature**: - 40 °C to + 75 °C
- **Humidity**: 0 to 100 % relative humidity
- **Ingress Protection**: IP66
- **Atmospheric conditions**: Normal air pressure and oxygen content

Construction
- **Housing**: Stainless steel AISI 316L
- **Weight**: 2.24 kg

Vibration sensitivity
- 0.13 m/s² perpendicular to the membrane will trigger the unit in the most sensitive range (44dB SPL)

RF emission and immunity
- Tested according to:
 - General electrical safety: EN61010-1
 - RF emission and immunity: EN61000-6-4
 - RF immunity: EN61000-6-2

Certifications
- **ATEX**: II 2G Ex ia IIC T4 DEMKO 08 ATEX 142547X
- **IECEX**: Ex ia IIC T4 IECEx ULD 08.0001X
- **IEC 61508 per FM**: SIL 1 in un-voted applications
 - SIL 2 in voted applications with ‘m+1’ redundancy

Dimensions
- 182 x 145 mm (7.2 x 5.7 inch)
- Two gland/conduit entries M20 x 1.5
Supplier’s declaration of conformity in accordance with EC, IEC and ATEX Directives

No.: BC1019

Issuers name and address: General Monitors Ireland Ltd., Ballybrit Business Park, Galway, Republic of Ireland

Object of the declaration:
Ultrasonic Gas Leak Detector, Gassonic Surveyor

The object of the declaration described above is in conformity with the requirements of the following documents:

IEC 60079-0 2004 Electrical apparatus for explosive gas atmospheres
Part 0: General requirements
IEC 60079-11 2006 Electrical apparatus for explosive gas atmospheres Part 11: Intrinsic Safety ‘i’
EN61010-1 2001 Safety requirements for electrical equipment for measurement, control, and laboratory use Part 1: General requirements.
EN61000-6-4 2001 Electromagnetic compatibility (EMC) Part 6-4: Generic standards - Emission standard industrial environments.
EN61000-6-2 2001 Electromagnetic compatibility (EMC) Part 6-2: Generic standards - Immunity for industrial environments
ISO 9001 2000 Quality Management System

Certificate Markings:

DEMKO 08 ATEX 142547X
IECEx ULD 08.0001X
Ex ia IIC T4

Additional information:
This declaration shall cease to be valid if modifications are made to the equipment without our approval.
Supplier will provide an Instruction Manual in a European Language upon request placed in adequate time.

Responsible Person
Cecil Lenihan
General Manager

The signatory acts on behalf of company management, and with full power of attorney
Gassonic A/S warrants the Gassonic Surveyor to be free from defects in workmanship or material under normal use and service within two (2) years from the date of shipment. Gassonic A/S will repair or replace without charge any equipment found to be defective during the warranty period. Full determination of the nature of, and responsibility for, defective or damaged equipment will be made by Gassonic A/S personnel. Defective or damaged equipment must be shipped prepaid by appointment with Gassonic A/S or the representative from which shipment was made. In all cases this warranty is limited to the cost of the equipment supplied by Gassonic A/S. The customer will assume all liability for the misuse of this equipment by its employees or other personnel. All warranties are contingent upon proper use in the application for which the product was intended and do not cover products which have been modified or repaired without Gassonic A/S approval or which have been subjected to neglect, accident, improper installation or application, or on which the original identification marks have been removed or altered. Except for the express warranty stated above, Gassonic A/S disclaims all warranties with regard to the products sold, including all implied warranties of merchantability and fitness and the express warranties stated herein are in lieu of all obligations or liabilities on the part of Gassonic A/S for damages including, but not limited to, consequential damages arising out of or in connection with the use or performance of the product.
Hazardous Area

Safe Area

Surveyor

Minimum specification:
Supply voltage: 13 V.
Supply power: 744 mW.

Specification for sum of J1.1 AND J1.3 AND J1.4 AND J1.5 in respect to J1.2:
U: 2.8 V
I: 1.3 mA
P: 930 mW
C: 10 nF
L: 0.01 mH

V+ J1.1
REL 1 J1.4
I_SOURCE J1.3
REL 2 J1.5
GND J1.2

Any interconnections between barriers or isolators must be made within the same enclosure. Then the possibility of a series fault connection can be ignored.

Barrier

Control room

SUPPLY AND RETURN 1
P&F Z 787 H:F

SUPPLY AND RETURN 1
U_SUP
24VDC

Safety output 1:
Uo = 28 V.
Io = 120 mA.
P0 = 830 mW.
Ro = 235 R min.
Co = 83 nF.
Lo = 2.59 mH
L/R = 44 uH/ohm

Safety output 2:
Uo = 28 V.
Io = 0 mA. (Diode)
P0 = 0 mW.
Ro = na.
Co = 83 nF.
Lo = na.
L/R = na.

Cabel param from En60079-14:
220 pF/meter
1 uH/meter or 30 uH/ohm

24VDC

Min. 5 kΩ

0V

0V
Any interconnections between barriers or isolators must be made within the same enclosure. Then the possibility of a series fault connection can be ignored.

Specification for sum of J1.1 AND J1.3 AND J1.4 AND J1.5 in respect to J1.2

Ui: 28 V
Ii: 120 mA
Pi: 950 mW
Ci: 10 nF
Li: 0.01 mH

Minimum specification:
Supply voltage: 13 V
Supply power: 744 mW

Surveyor

Cable param from En60079-14:
220 pF/meter
1 uH/meter or 30uH/ohm
Isolator

0..4/20mA

Safety:
- $U_0 = 28 \text{ V}$
- $I_0 = 0 \text{ mA}$
- $C_0 = 420 \text{ nF}$
- $L_0 = 16.7 \text{ mH}$

Cable param from En60079-14:
- 220 pF/meter
- 1 uH/meter or 30 uH/ohm

Surveyor

Minimum specification:
- Supply voltage: 13 V
- Supply power: 744 mW

Specification for sum of J1.1 AND J1.3 AND J1.4 AND J1.5 in respect to J1.2
- $U = 28 \text{ V}$
- $I = 0.1 \text{ mA}$
- $P = 947 \text{ mW}$
- $C = 353 \text{ nF}$
- $L = 0.73 \text{ mH}$

Surveyor minimum specification:
- Supply voltage: 13 V
- Supply power: 744 mW

Hazardous Area

- Any interconnections between barriers or isolators must be made within the same enclosure. Then the possibility of a series fault connection can be ignored.

Control room

24VDC

U_SUP

24VDC

0V

MAX:100R

J1.2

GND

J1.1

V+

1

2

3

V-

7

8

P&F KFD0-SD2-Ex1.1065

1

3

2

V-

V+

11

12

V+

J1.1

GND

J1.2

I_SOURCE

J1.3

REL 1

J1.4

REL 2

J1.5

Safe Area

- **SUPPLY**
- **CURRENT SENSE**
- **P&F KFD0-CS-Ex1.52**

Cable param from En60079-14:
- 220 pF/meter
- 1 uH/meter or 30 uH/ohm
Isolator

Description of use:
This installation can be used when only the relay functionality is used.

Surveyor

Minimum specification:
- Supply voltage: 13 V
- Supply power: 744 mW

Specification for sum of J1.1 AND J1.3 AND J1.4 AND J1.5 in respect to J1.2
- Uo: 28 V
- Io: 125 mA
- Ro: 93 ohm
- Ci: 10 nF
- Li: 0.01 mH

Hazardous Area

Safe Area

Any interconnections between barriers or isolators must be made within the same enclosure. Then the possibility of a series fault connection can be ignored.

Safety:
- Uo: 10.5 V
- Io: 14 mA
- Ro: 800 ohm
- Calulated Po: Po: 34.5 mW

Surveyor:

![Surveyor Diagram](image)

Cabel param from En60079-14:
- 220 pF/meter
- 1 uH/meter or 30uH/ohm